Evaluation of Fourier Integrals Using ß-Splines

نویسنده

  • G. P. Agrawal
چکیده

Finite Fourier integrals of functions possessing jumps in value, in the first or in the second derivative, are shown to be evaluated more efficiently, and more accurately, using a continuous Fourier transform (CFT) method than the discrete transform method used by the fast Fourier transform (FFT) algorithm. A ß-spline fit is made to the input function, and the Fourier transform of the set of B-splines is performed analytically for a possibly nonuniform mesh. Several applications of the CFT method are made to compare its performance with the FFT method. The use of a 256-point FFT yields errors of order 10~2, whereas the same information used by the CFT algorithm yields errors of order 10~7—the machine accuracy available in single precision. Comparable accuracy is obtainable from the FFT over the limited original domain if more than 20,000 points are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M.G. Cimoroni - E. Santi SOME NEW CONVERGENCE RESULTS AND APPLICATIONS OF A CLASS OF INTERPOLATING-DERIVATIVE SPLINES

In this paper we construct quadrature rules for the numerical evaluation of some singular integrals by using the interpolating-derivative splines. Convergence properties and numerical results are given.

متن کامل

Weighted Integrals of Polynomial Splines

The construction of weighted splines by knot insertion techniques such as deBoor and Oslo type algorithms leads immediately to the problem of evaluating integrals of polynomial splines with respect to the positive measure possessing piecewise constant density. It is for such purposes that we consider one possible way for simple and fast evaluation of primitives of products of a polynomial B-spl...

متن کامل

Some Remarkable Properties of Sinc and Related Integrals

Using Fourier transform techniques, we establish inequalities for integrals of the form ∫ ∞ 0 n ∏ k=0 sin(ak x) ak x dx . We then give quite striking closed form evaluations of such integrals and finish by discussing various extensions and applications.

متن کامل

Efficient computation of highly oscillatory integrals with Hankel kernel

In this paper, we consider the evaluation of two kinds of oscillatory integrals with a Hankel function as kernel. We first rewrite these integrals as the integrals of Fourier-type. By analytic continuation, these Fourier-type integrals can be transformed into the integrals on [0, + ), the integrands of which are not oscillatory, and decay exponentially fast. Consequently, the transformed integr...

متن کامل

Optimized Evaluation of Box Splines via the Inverse FFT

Box splines are a multivariate extension of uniform univariate B-splines. Direct evaluation of a box spline basis function can be difficult , but they have a relatively simple Fourier transform and can therefore be evaluated with an inverse FFT. Symmetry, recursive evaluation of the coefficients, and parallelization can be used to optimize performance. A windowing function can also be used to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010